

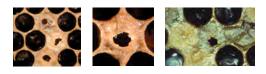

American Foulbrood

Bacterial disease of honey bee larvae

Causative organism: Paenibacillus larvae

American Foulbrood

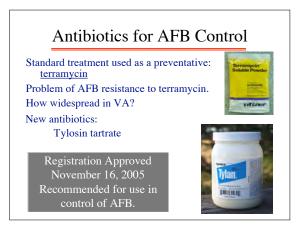
- Infective stage is the <u>spore</u>, enters body by ingestion of contaminated food
- Attacks young larva (<2 days of age), kills in late larval to pupal stage
- Spores germinate about one day after ingestion, multiply in midgut, penetrate into body cavity, larva dies from a septicemic condition


American Foulbrood

- Larvae/pupae decay in cells, change color (tan to dark brown) and become 'ropey'; pupae show tongue
- Form <u>scales</u> in cells that are difficult to remove

American Foulbrood -Recognition in the Bee Yard

- 1. Critical to recognize at an early stage of infection
- 2. Must be able to distinguish from other diseases
- 3. Scan frames for perforated cappings when inspecting
- 4. Open cells and examine larvae



American Foulbrood -Prevention and Treatment

- 1. Kill colony and destroy equipment by burning
- 2. Treat colony with an antibiotic
- 3. Shake bees and re-establish in a new colony with frames of foundation. Treat with an antibiotic.
- 4. Keep AFB resistant bees

Using Antibiotics for AFB Control

Tylosin (marketed as Tylan) Manufactured by Elanco Animal Health

Dosage: 200 mg in 20 g confectioners sugar <u>Treatment</u>: 3X at one week intervals Effectiveness: Good results on low

level infections. Found AFB in colonies with high infection rates after several weeks.

Hygienic Bees: Resistance to AFB

Hygienic Bees

- ✓ New World Carniolan (Sue Cobey, Ohio State Univ)
- nio ing,
 - Selected for rapid buildup, overwintering, tracheal mite resistance, gentleness, productivity, hygienic behavior
- ✓ Minnesota Hygienic Bees M. Spivak
 - Selected for disease and mite resistance. Good AFB resistance.

Hygienic Behavior

- Natural defense mechanism against diseases and parasites
- Hygienic bees detect, uncap, and remove diseased brood from combs before the disease becomes infectious
- The hygienic trait can be found in approximately 10% of managed colonies

Technique uses liquid nitrogen to kill brood Frames are placed in a hive and checked after 48 hours. Amount of dead brood removed indicates hygienic behavior. Testing for Hygienic Behavior in Bees Non-hygienic bees Hygienic bees

Stress Diseases of Honey Bees European foulbrood Sacbrood (Chalkbrood) Nosema Stress conditions which aggravate problems with these diseases include, cool temperatures, moisture, food shortages

European Foulbrood

Bacterial disease of honey bee larvae

Causative organism: Melissococcus pluton

European Foulbrood

- Non spore forming bacteria
- Infects only young larvae after ingestion; kills larvae in the coiled stage
- Larvae turn yellowish, then brown, with white crosspattern (from trachea)

easily detached

European Foulbrood - Treatment

Light infestation

eliminate stress

Moderate

eliminate stress, may want to requeen

Heavy infestation treat with terramycin requeen

Sacbrood

Viral disease of honey bee larvae

Sacbrood

- common virus, isolated from both healthy larvae and adults
- older larvae may be more susceptible, die after the cells are sealed
- larvae killed by the sacbrood virus turn yellow-gray then blackish, head changes to black color first

sacbrood virus

Sacbrood

• larval "skin" remains intact, larva can be removed from cell as a fluid-filled sac. Forms a scale, but easily removed.

Sacbrood - Treatment

No effective treatment, other than improving colony conditions. Reduce stress on the colony.

Chalkbrood

Fungal disease of honey bee larvae

Causative organism: Ascosphaera apis

Chalkbrood

• 3-4 day old larvae are infected after ingestion of spores

Spore balls

- Spores germinate in the gut of the larva
- Fungal mycelia grow throughout the larva, killing the larva after the cell has been sealed
- The larva is transformed into a white chalklike mummy

Chalkbrood Symptoms

- Chalkbrood mummies are white to grayish-blue or black in color (darker mummies have fruiting bodies)
- Bees uncap cells with chalkbrood but typically leave the mummies in the cells
- Mummies are also typically found on the bottom board

Chalkbrood - Treatment

- Disease may be encouraged by stress, especially chilling of the larvae
- Elimination of stress can help reduce incidence
- No effective treatments are available, requeening may help

Nosema

Microsporidian (fungus) disease of adult honey bees.

Causative organism: *Nosema apis* Second species now in US: *Nosema ceranae*

Nosema Disease

(N. apis)

- Very common disease condition, 50 90% of the colonies have bees with Nosema
- Most prevalent in late winter and early spring, aggravated by stress
- Ingested spores germinate in the midgut and invade the epithelial cells
- The protozoan damages the cells, affects digestion, causes malnutrition and premature death

May see defecation in the hive, weak, crawling bees, retarded build-up in spring

• No good symptoms of infection,

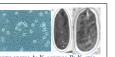
identification by analysis of bee

Heavy infections may lead to dysenteryControl

Nosema:

Symptoms and Treatment

✓ elimination of stress


abdomens

 use of antibiotic fumagillin (Fumigilin B) which is fed in the fall as a preventative

New Pathogen: Nosema ceranae

- Discovered in 1996 in *Apis cerana* and assumed to be specific to Eastern honey bee
- In 2005 Chineses researchers reported *N. ceranae* in *A. mellifera*. In same year it was discovered in Spain (following increases in Nosema infections from 2000 (10%) 2004 (88%)
- N. caranae appears to be highly pathogenic to mellifera bees, killing 100% of test bees in lab studies in Spain
- Now identified in US, possible factor in CCD. Not as seasonally limited

Nosema ceranae in Virginia

- Collected samples from >300 hives
- Analyzed using spore counts and realtime PCR
- Results indicate approximately 72% of the hives in Virginia are infected with N. ceranae

✓ 11% showed heavy infection, 16% moderate, and 73% a low infection level.

Colony Collapse Disorder (CCD)

- Sudden loss of a colony's population of adult bees leading to colony death
- Disorder is characterized by:
- ✓ An absence of adult bees in colonies with few dead bees, if any, in the hive or in front of the hive
- ✓ Frequent presence of capped brood in colonies
- Presence of food reserves (honey, pollen) that had not been robbed out, and hives not attacked by pests such as wax moths
- ✓ In colonies that still have bees, characterized by small clusters with a laying queen, not responsive to stimulative feeding

Colony Collapse Disorder

Photographs from a collapsing colony in Georgia. Large amounts of brood but few adults. (photos from Jeff Pettis, USDA)

CCD - A New or Old Problem?

- Symptoms similar to disorder first reported in 1915 - Disappearing Disease
 - ✓ Large losses of adult bees with no accumulation of dead bees in the hive or at the entrance
 - \checkmark Queens were generally the last to be affected
 - ✓ Pollen and honey stores were normal and often abundant in dead hives
 - ✓ No single pathogen was ever identified or associated with the disorder

Where Do We Stand On CCD?

• What has been eliminated as possible causes

- ✓ Feeding, Use of bees (honey production, pollination), Queen sources, Chemical use (?)
- What possible causes are being examined
 - ✓ Pathogens of bees or brood (IAPV Israel Acute Paralysis Virus)
 - ✓ Chemical residues/contamination
 - \checkmark Parasite loads in bees and brood
 - ✓ Nutritional fitness of adult bees
 - ✓ Levels of stress (indicated by stress induced proteins)
 - ✓ Lack of genetic diversity